

2023 OLED発光材料レポート

Chief Analyst Dr. Choong Hoon YI

Analyst
Dae Jeong YOON

1.	主な要約	6		
2.	青色発光材料の開発動向	8		
	2.1 まとめ			
	2.2 高効率・長寿命の青色発光材料候補技術の比較			
	2.3 蛍光デバイスの量子効率向上			
	2.4 Hyperfluorescence			
	2.5 りん光材料			
	2.6 重水素置換			
3.	発光材料の性能推移	34		
	3.1 可溶性材料			
	3.2 Hyperfluorescence			
4.	OLED 業界の課題分析 ····································	38		
	4.1 Samsung Display の青色りん光材料開発状況			
	4.2 IT 用ライン投資の現状と展望			
	4.3 中国の OLED 生産ラインの再編について			
	4.4 Samsung Display の QD-OLED ラインの現状と将来展望			
	4.5 iPhone シリーズ向けパネルサプライヤーの見通し			
	4.6 Samsung Display のスマートフォン向け rigid OLED 出荷が減少中			
	4.7 Samsung Display の発光構造応用モデルの現状と将来予測			
	4.8 TCL CSOT のソリューションプロセス OLED ライン投資の可能性			

5.	OLED メーカー各社の量産能力・分析と予測	52
	5.1 Samsung Display	
	5.2 LG Display	
	5.3 BOE	
	5.4 TCL CSOT	
	5.5 EverDisplay Optronics	
	5.6 Tianma	
	5.7 Visionox	
	5.8 パネルメーカー別生産ライン状況	
	5.9 年間基板面積の見通し	
	5.10 小型OLEDの年間基板面積予測	
	5.11 中・大型OLEDの年間基板面積予測	
6.	OLED 出荷見通し ····································	71
	6.1 全体	
	6.2 応用製品別	
7.	パネルメーカーによるサプライチェーンとパネル構造の分析	76
	7.1 Samsung Display	
	7.2 LG Display	
	7.3 BOE	
	7.4 TCL CSOT	
	7.5 Tianma	
	7.6 Visionox	

8.	OLED 発光材料の販売分析		 . 99
	8.1 全体		
	8.2 国別		
	8.3 パネルメーカー別		
	8.4 レイヤー別		
	8.5 OLED 構造別		
	8.6 機能別		
	8.7 応用製品別		
	8.8 材料メーカー別		
9.	2022年のOLED 発光材料市場	シェア分析 …	 · 125
	9.1 全体		
	9.2 Host		
	9.3 Dopant		
	9.4 HTL		
	9.5 ETL		
	9.6 その他		

10.	OLED 発光材料需要予測	 141
	10.1 概要	
	10.2 全体	
	10.3 国別	
	10.4 パネルメーカー別	
	10.5 レイヤー別	
	10.6 OLED 構造別	
	10.7 発光材料別	
11.	OLED 発光材料市場予測	 158
	11.1 全体	
	11.2 国別	
	11.3 パネルメーカー別	
	11.4 レイヤー別	
	11.5 OLED 構造別	
	11.6 発光材料別	

2. 青色発光材料の開発動向

2.2 高効率・長寿命の青色発光材料候補技術の比較

- 成均館大学のイ・ジュンヨプ教授は、UBIリサーチが 2021年に開催したセミナーで、外部量子効率 15%以上、寿命 1000時間(@T97、1000nit、CIEy≤0.05)の青色発光材料が緊急に必要であると述べた。
- つまり、現在の2倍以上の改善が必要ということである。

青色蛍光、りん光、TADF、Hyperfluorescence のデバイス特性の比較 **Delayed Fluorescence Fluorescence Phosphorescence** HE (TTF) (TADF) Theoretical maximum internal quantum efficiency **External Quantum Efficiency** (Back Emission) **Material stability** Lifetime **Device Stability Color Purity** Host Core technologies **Dopant**

Source: Lee Jun Yeob (2021 UBI Seminar)

4. OLED 業界の課題分析

4.7 Samsung Displayの発光構造応用モデルの現状と将来予測

- サムスンディスプレイのM11は2021年初めに発売されたサムスン電子の「Galaxy S21 Ultra」に初めて適用され、2022年に発売されたサムスン電子の「Galaxy S22」シリーズの一部とAppleの「iPhone 14」シリーズなどに使用された。
- M12 は、2022年にサムスン電子の「Galaxy Z Fold4」に初めて採用され、2023年に発売された「Galaxy S23」シリーズにも適用され、2023年前半に発売されるサムスン電子の ******** ************にも適用されるとみられている。
- また、M12 は2023年後半に発売されるアップルの「iPhone15」シリーズに適用される見込みである。
- M13 は、2023年にはサムスン電子やアップルには採用されないが、2024年に発売されるサムスン電子の******シリーズに適用される見通しだ。
- M13 は当初******に適用されると予想されていたが、結局適用されない。
- M14 は、アップルの******シリーズへの適用が見込まれており、偶数番号の発光構造はアップル専用に開発される見込みだ。

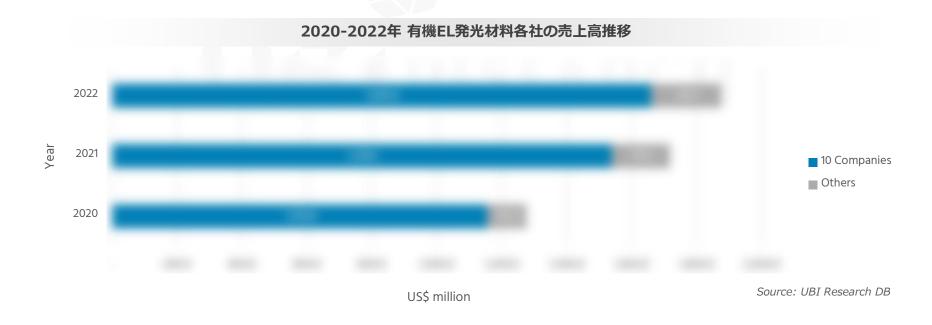
Samsung Displayの発光構造と想定される主なアプリケーションモデル

Source: UBI Research DB

7. パネルメーカーによるサプライチェーンとパネル構造の分析

7.1 Samsung Display

- **✓** Samsung Display の小型OLED 発光構造とサプライチェーン
 - M12では、保土ヶ谷化学の CPL と Duksan Neolux の G' が Apple に、Solus の CPL とMerck の G' が Samsung Electronics に供給された。
 - M13では、 ******の CPL と ******* の G' が独占的に使用され、aETL の供給元が Solus から ****** に変更された。
 - M13は2023年に ******に独占的に採用される予定である。



8. OLED発光材料の販売分析

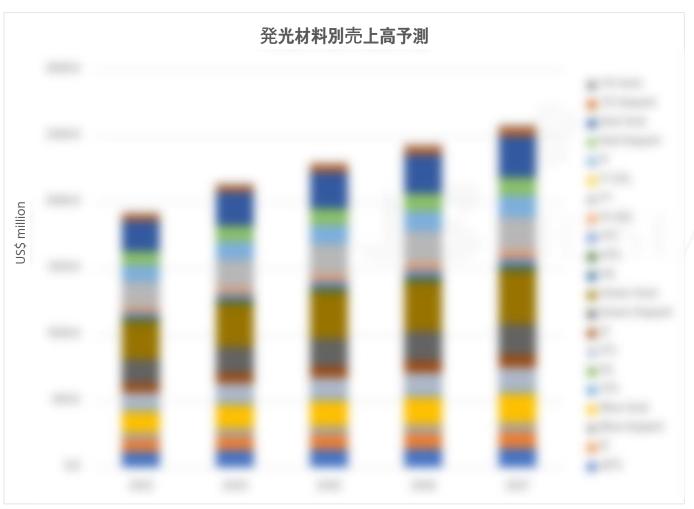
8.8 材料メーカー別

● 直近3年間の売上高分析

- 主要発光材料メーカー 10社(Duksan Neolux, DuPont, 出光興産, LG Chem, Merck, Novaled, Samsung SDI, SFC, Solus, UDC)を含む全ての OLED発光材料メーカーの売上を調査した。
- リサイクル材料や開発用材料も含まれ、パネルメーカーのパネル量産量と新規発光材料の価格から算出したため、提示された売上は発光 材料メーカーの実際の売上と異なる場合がある。
- 2022年までの為替レートは、1ドル=1,100ウォンとして計算している。

9. 2022年のOLED発光材料市場シェア分析

9.1 全体


- 2022 OLED発光材料売上シェアは、Host、Dopant、HTL、ETL、その他に分類して分析した。
- HTLには HIL、HTL、HTL、HTL prime (Red, Green, Blue)、p+ドーパント、ETLにはEIL、ETL、aETL (advanced ETL)、その 他の材料にはCGL、CPLが含まれる。
- 販売シェアはホスト材料が ***%と最も高く、次いでHTLが ***%となっている。
- Host材料、Dopant材料ともに、Green, Red, Blue, Yellow Green の順で高い販売シェアを示している。

11. OLED発光材料市場予測

11.6 発光材料別

✓ 全体

Material 2023 2024 2025 2026 2027 YG host **YG** dopant Red host **Red dopant** P+ **N-CGL** HTL HITL HIL **Green host Green dopant** G' ETL EIL CPL Blue host **Blue dopant** aETL

Source: UBI Research DB

(US\$ million)