

2023 OLED 부품소재 보고서

Dr. Choong Hoon YI / Chief Analyst Dr. Chang HO Noh / Senior Analyst Jun Ho KIM /Analyst

UB RESEARCH

1.	핵심 요약	4
2.	업체별 폴더블 이LED 사업과 전시 동향 2.1 세트 업체별 폴더블 제품 출시 동향 2.2 삼성디스플레이 2.3 LG디스플레이 2.4 BOE 2.5 TCL CSOT 2.6 Tianma 2.7 Visionox	7
3.	OLED 주요 개발 현황 분석 3.1 Micro lens array 3.2 Encapsulation Technology 3.3 QD 소재 3.4 Oxide TFT	30
4.	OLED 패널 업체 양산 캐파 분석과 전망 4.1 패널 업체별 라인 현황 4.2 연간 전체 기판 면적 전망 4.3 소형 OLED 연간 기판 면적 전망 4.4 중대형 OLED 연간 기판 면적 전망	69

UB RESEARCH

5.	OLED 출하량 전망	91
	5.1 OLED 전체 출하량	
	5.2 응용 제품별 출하량	
	5.3 스마트폰용 OLED 출하량	
	5.4 TV용 OLED 출하량	
	5.5 IT용 OLED 출하량	
6.	주요 부품소재 시장 전망	99
	6.1개요	
	6.2 전체 시장	
	6.3 기판	
	6.4 TFT	
	6.5 Encapsulation	
	6.6 터치 센서	
	6.7 편광판	
	6.8 Adhesive	
	6.9 커버 윈도우	
	6.10 Driver IC & COF	
	6.11 복합 시트	
	6.12 공정용 필름	
7.	부록	127
	7.1 소형 폴더블 및 롤러블 OLED 전시 제품	
	7.2 중대형 폴더블 및 롤러블 OLED 전시 제품	

2. 업체별 폴더블 OLED 사업과 전시 동향

2.1 세트 업체별 폴더블 제품 출시 동향

- 🖉 Huawei Mate X 시리즈
 - Huawei는 2023년 4월에 'Mate X3'를 출시하였으며, ***** 타입의 ***** 폴더블폰 1종을 추가로 출시할 계획임.
 - 'Mate X3'는 Mate X2'와 마찬가지로 인 폴딩 방식이며, 크기는 7.8인치, 커버 윈도우는 *****가 사용됨. Mate X3의 총 판매량은 약 ***** 대로 예상됨.
 - 패널 공급사는 *****와 ***** 이며, ***** 는 ***** 에서 공급하고, 하드 코팅 업체는 ***** 임.
 - 하반기에 출시될 ***** 모델의 크기는 ***** 인치, ***** 에 커버 윈도우는 ***** 가 사용될 것으로 예상됨.
 - ***** 용으로 ***** 이 진행되었으나, ***** 로 인해 불발되었음.

Model	Mate X	Mate Xs	Mate X2	Mate Xs2	Mate X3
Launch					
Folding type					
Size [inch]					
Display supplier					ROL VALUE
Cover window					
Cover window supplier					

Huawei의 'Mate X' 시리즈 비교

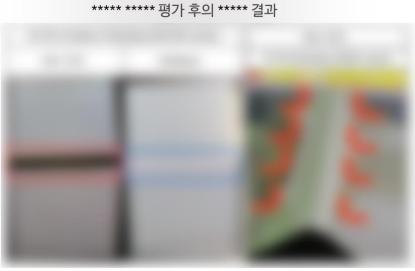
Source: UBI Research DB

3. OLED 주요 개발 현황 분석

3.1 Micro lens array

- ✓ Meta-lit Lens Array OLED : LG디스플레이
 - 오른쪽 그림은 LG디스플레이가 개발한 MLA가 적용된 OLED 디스플레이 장치의 단면도임. OLED 디스플레이는 ***** 에 따라 *****과 *****이 가능함. 제 1전극 상에는 발광층이 배치됨. 발광층은 단일층의 발광물질을 포함할 수 있으며, ***** 은 발광 효율을 높이기 위해 *****, *****, ***** , ***** 등을 포함하는 ***** 을 가질 수 있음.
 - 제 1전극과 발광층은 *****에 ***** 부분과 *****에 ***** 부분의 형태에 따른 형상을 가질 수 있음. 제 2전극은 ***** *****에 *****와 *****의 형태에 따른 형상을 가질 수 있음. 따라서 그림과 같이 마이크로 렌즈를 구성할 수 있음.
 - 신호에 따라 제1 전극 및 제2 전극에 전압이 인가되면, *****과 ***** 이 ***** 하여 *****을 구성함. *****아 ***** *****에서 ***** *****로 천이하면 발광층에서 ***** ***** 이 됨. ***** 은 ****을 통과하여 ***** *****됨.

*****이 마이크로렌즈를 구성하므로, 전체 반사에 의해 발광층의 내부에 구속된 빛은 *****에 의해 *****되도록 *****의 마이크로렌즈에 의해 ***** 로 ***** 될 수 있는 것을 특징으로 하는 *****. 결과적으로, ***** 의 ***** 이 향상됨.


Source: LG Display. *****

또한, *****, 제1전극(111), 발광층(113) 및 제2전극(115)의 ***** 는 ***** 되므로, ***** 이 극대화됨.

OLED display 장치의 단면도

Samsung Display, *****

Samsung Display는 *****에서 무기막을 ***** 로, 유기막을 ***** 로 ***** 한 ***** 의 TFE를 발표하였음. 종래의 ***** 보다 약 *****% 더 얇은 두께에서 동일한 수준의 encapsulation 성능을 확인하였으며, ***** 평가에서도 상온 ***** test 결과 ***** 만으로 *****을 형성한 경우 ***** 이 발생하였으나, ***** 를 적용한 ***** 에서는 ***** 없이 우수한 성능을 나타내었음.

Wearable 디스플레이, 마이크로 디스플레이, Tablet 등의 IT 제품군, Flexible 투명 TV 등 OLED 응용 분야의 다변화에 따라 encapsulation 기술의 개발 방향도 변화하고 있음. 기존의 encapsulation 기술은 ***** 성능을 향상시키는 데 집중했으나, 차세대 encapsulation은 *****과 *****, ***** 등의 *****과

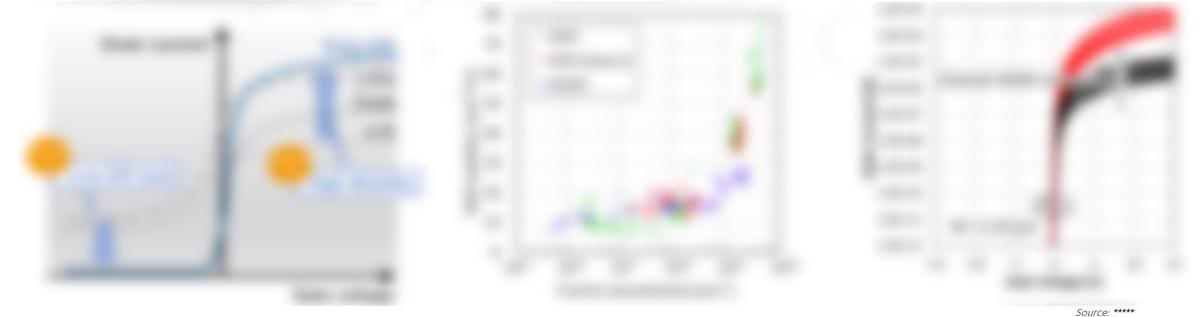
*****, ***** 등의 개선이 요구됨. Oxide TFT는 ***** 하여 저 *****의 ***** 소재와 ***** 개발이 요구되며 고해상도화에 따른 ***** 성능 확보도 필요함.

3. OLED 주요 개발 현황 분석

3.2 Encapsulation Technology

✓ Encapsulation 개발 방향

3. OLED 주요 개발 현황 분석


3.4 Oxide TFT

- 🥖 High Mobility Oxide TFT 개발 동향
 - ***** 와 ***** 은 ***** ***** *****를 이용해 기존의 ***** 수준으로 ***** *****를 낮게 유지하면서, ***** 수준인 ***** 이상의 높은 mobility를 갖는 TFT를 ***** 위에 높은 수준의 ***** 를 갖게 제조한 결과를 ***** 에서 보고함. 이는 기존의 ***** 대비 5배 이상 높은 수준이며 ***** *****
 ***** 는 ±1 V 이내임.
 - ***** ***** 는 ***** 에서 ***** 를 ***** 로 변화 시 ***** 의 변화가 없어 ***** 대비 높은 수준의 안정성을 나타내었으며, ***** , ***** V
 이상에서는 ***** ***** 대비 안정한 구동특성을 보였음.

poly-crystalline oxide semiconductor TFT의 특징

Hall $\mu\text{-n}$ plots of IGO and IGZO films on 4" & G6 glass

W/L dependence of IGO TFT (@ L=2 µm)

4. OLED 패널 업체 양산 캐파 분석과 전망

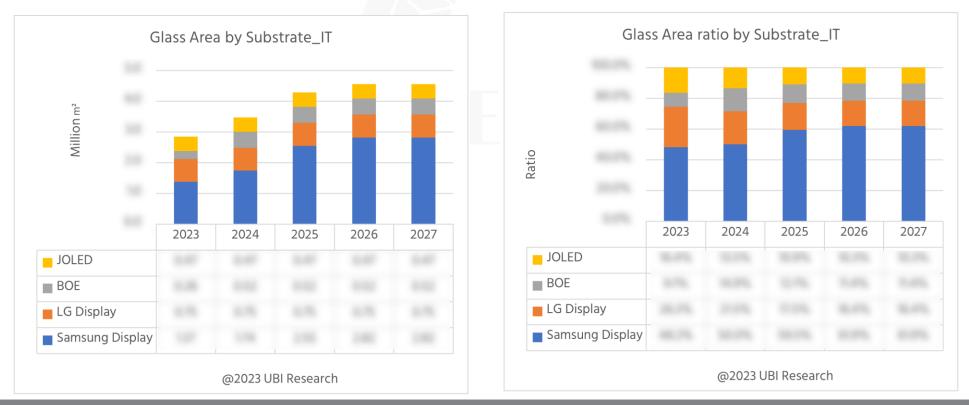
4.1 패널 업체별 라인 현황

- 🥒 삼성디스플레이 Q1
 - QD-OLED 생산 라인인 Q1의 2023년 1분기 기준 종합 수율은 ***** %임.
 - 2022년 말 기준으로 캐파는 기존의 월 **K에서 **K로 확장되었으며, ****년 **기까지 **K, ****년 ***까지 **K로 확장될 것으로 전망됨.
- 🥒 삼성디스플레이 8.6G IT
 - ***** *****용으로 ***라인 위치에 월 **K 규모의 **** 투자가 결정되었음.
 - 장비 발주는 *****, 장비 입고는 *****, 양산은 *****로 예상됨.
 - ***** 방식의 ***** ***** 양산 라인이며, 증착기 공급 업체는 ***** 임.
 - *****과 *****이 적용된 ***** OLED 구조에 TFT 기술로 ***** 가 적용될 예정임.
 - *****의 ***** ***** *****서 ***** OLED를 개발하고 있음.

4.1 패널 업체별 라인 현황

- BOE B12
 - ***** *****라인이며, ph-1은 2022년 4월부터 본격적으로 양산이 시작되었음.
 - LTPO TFT 캐파는 월 *****K이며, ph-2에서 *****까지 추가로 월 *****K 캐파가 확보될 것으로 전망됨.
 - *****부터 ph-2에서 ***** 용 패널이 양산 될 예정임.
 - Ph-3는 ***** ***** 양산 라인이며, *****부터 시생산에 돌입할 것으로 전망됨.
 - Ph-3는 *****이며, ***** ***** 용 패널 양산을 목표로 하고 있음.
 - 2023년 상반기 B12의 월 평균 가동률은 ***** %로 분석되었음.

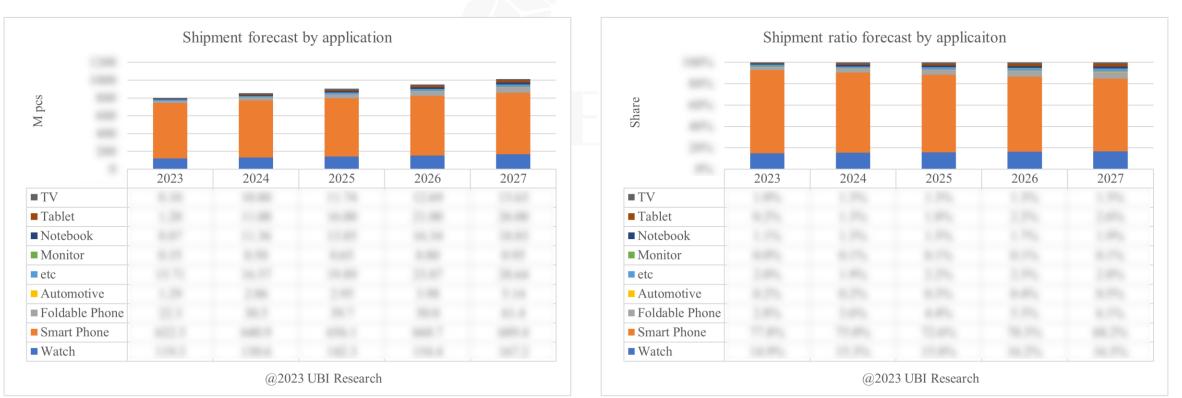
2023년 상반기 BOE B12의 월별 가동률


	Jan.	Feb.	Mar.	Apr.	May	Jun.	Average
Operating ratio							

Source: UBI Research DB

4. OLED 패널 업체 양산 캐파 분석과 전망

4.4 중대형 OLED 연간 기판 면적 전망


- 🥒 IT용
 - 삼성디스플레이의 IT용 라인 캐파는 2023년 하반기에 *****이 IT용 라인으로 전환되고, 2025년부터는 *****라인이 ***** 형태로 가동 될 것으로 예상됨에 따라, 2026년까지 ***** million m² 로 확대될 것으로 전망됨.
 - LG디스플레이의 캐파는 2023년 하반기부터 E6-4 라인이 가동되면서 ***** million m²가 될 것으로 예상됨.
 - 2023년 하반기부터 BOE의 B12-3 라인이 가동되면서, BOE의 IT 캐파는 ***** million m² 가 될 것으로 전망됨.

5. OLED 출하량 전망

5.2 응용 제품별 출하량

- 스마트폰용 OLED의 출하량은 2023년에 ***** 억대를 기록하고 연평균 성장률 ***** %로 2027년에는 ***** 억대의 시장을 형성할 것으로 전망됨.
- 삼성디스플레이와 LG디스플레이에서 양산하는 TV용 OLED는 2023년에 ***** 만대가 출하되고 연평균 ***** %의 성장률을 기록하며 2027년에는 ***** 만대의 출하량을 기록할 것으로 예상됨.
- Tablet PC용 OLED는 2023년에 *****대가 출하되고 연평균 ***** %의 성장률을 기록하며 2027년에는 *****만대의 출하량을 기록할 것으로 예상됨. 이는 2024년부터 본격 양산되는 ****의 ***** 용 패널 생산량까지 감안된 수치임.

2023 OLED 부품소재 보고서

Dr. Choong Hoon YI / Chief Analyst Dr. Chang HO Noh / Senior Analyst Jun Ho KIM /Analyst

UBI RESEARCH

www.ubiresearch.com A-1901, Samho Mulsan Bldg, 83 Nonhyeon-ro, Seocho-gu, Seoul, 06296, South Korea TEL : +82-2-577-4391 E-MAIL : info@ubiresearch.com