

IT용 OLED 기술과 산업 동향 분석 보고서

2023.10

Senior Analyst Chang Wook HAN Chang Ho NOH

Analyst Dae Jeong YOON

UB RESEARCH

1.	핵심 요약	5
2.	LTPO TFT Backplane ·····	7
	2.1 LTPS TFT와 Oxide TFT, LTPO TFT 비교	
	2.2 LTPS TFT 패널과 LTPO TFT 패널 성능 비교	
	2.3 LTPO TFT 패널의 소비 전력이 낮은 원리	
	2.4 LTPO TFT 적용 제품	
	2.5 LTPO TFT 생산 업체 현황	
	2.6 업체별 LTPO TFT 화소 회로 성능	
	2.7 LTPO TFT 제조 원가 이슈	
	2.8 저가 LTPO TFT 기술	
3.	8세대 기판 TFT Backplane ······	20
	3.1 LTPO TFT 제작	
	3.2 Oxide TFT 개발 현황	
	3.3 8세대 대응 IGZO 타겟 공급 업체	
	3.4 고 이동도 Oxide TFT 필요성	
	3.5 8세대 대응 Oxide TFT의 요구 성능	
	3.6 IT제품용 Oxide TFT 내부 보상회로	

UB RESEARCH

4.	RGB Tandem OLED ······	3
	4.1 Single OLED와 Tandem OLED 비교 (성능 및 cost)	
	4.2 Tandem OLED 소자 특성	
	4.3 Single OLED와 Tandem OLED 소자 구조	
	4.4 Tandem OLED의 이슈 (저계조 color shift)	
5.	Color Filter on Encapsulation	3
	5.1 COE 기술의 필요성	
	5.2 편광판 적용 패널과 COE 패널의 특성 비교	
	5.3 COE 공정	
	5.4 패널 업체별 COE 개발 현황	
6.	Hybrid OLED	4
	6.1 Hybrid OLED의 강점	
7.	Photolitho OLED	4
	7.1 Photolitho OLED 기술 발표 사례	
	7.2 패널 업체별 Photolitho OLED 개발 현황	
	7.3 Photolitho OLED 기술들의 공통점	
	7.4 Photolitho OLED 주요 특허	

3

8.	OLED 패널 업체 양산 캐파 분석과 전 명 8.1 삼성디스플레이	ታ 	64
	8.2 LG디스플레이		
	8.3 BOE		
	8.4 TCL CSOT		
	8.5 Visionox		
	8.6 업체별 IT용 OLED 라인 캐파 8.7 연간 기판 면적 전망		
9.	OLED 출하량 전망 9.1 전체 9.2 응용 제품별 9.3 패널 업체별	RESEARCH	74

3. 8세대 기판 TFT Backplane

3.5 8세대 대응 Oxide TFT의 요구 성능

- OLED TV에는 oxide TFT의 이동도와 문턱전압(Vth)을 보상하기 위해 외부 보상 회로를 사용함.
- 외부 보상 회로는 추가적인 logic circuit와 memory가 필요하므로, 중소형 크기의 IT제품에는 적합하지 않음.
- 또한 외부 보상 회로는 기기가 꺼져 있는 상태에서 보상 인자들을 추출하여야 하므로 사용 빈도가 잦은 IT제품에는 적합하지 않음.
- 내부 보상 회로는 통상 문턱전압의 변화를 보상하기는 용이하나, IT제품의 경우 유리기판 이용효율이 90% 이상으로 TV보다 더 많은 유리기판 면적을 사용하므로 8세대 기판에서의 oxide TFT의 Vth 균일도를 TV제품 요구 수준보다 더 향상을 시켜야 함.
- 이동도의 변화도 전류량을 저감시키는 요인이므로 Vth와 이동도
 모두를 보상하는 내부보상회로가 개발되어야 함.

내부 보상 방식과 외부 보상 방식 비교

Source: LG Display KIDS Display School 2016

4. RGB Tandem OLED

4.1 Single OLED와 Tandem OLED 비교

- Tandem OLED는 고온 환경에 노출이 많은 자동차용 디스플레이의 수명을 확보하기 위하여 LG디스플레이에서 처음 적용이 되었음.
- 스마트폰은 3년 정도의 교체 주기를 가지지만 IT제품인 tablet PC나 notebook은 5년 정도의 교체 주기를 가지며, white 배경의 화면이나 고정 된 아이콘들이 많으므로 single OLED보다 수명이 더 긴 tandem OLED를 적용하여야 함.
- Tandem OLED를 적용하기 위해서는 유기물 증착 챔버가 30% 더 필요하고 유기물 재료비는 70% 더 증가하지만, single OLED 대비하여 수명을 4배 증가 시킬 수 있는 장점이 있음.

7. Photolitho OLED

7.1 Photolitho OLED 기술 발표 사례

 SID 2023에는 고개구율의 RGB photopatterning 기술로 Japan Display의 eLEAP, Visionox의 Visionox intelligent pixelization(ViP), Semiconductor Energy Laboratory의 mask-less lithography(MML) 기술 발표와 샘플 데모가 있었음.

	eLEAP	ViP	M	ML
Company	JDI	Visionox	S	EL
Active area size	1.4" full round	7.9″	8.3″	1.5″
Resolution	454 x 454	-	7680 X 4320	3840 x 2880
Pixel per inch	326	381	1058	3207
Aperture ratio	54.1%	22.59 %	22%	62.3%
PDL Gap	10 <i>µ</i> m	22/24 μm	< 5 µm	<1 <i>µ</i> m
Brightness	1200 nits	700 nits	400 ~ 700 nits	> 5,000 nits
Picture			24.0 μm 5 μm 224.0 μm	Aperture ratio 62.3% 20 µm

SID 2023에서 공개된 RGB photopatterning 기술 발표 사례

Source: UBI Research DB

IT용 OLED 기술과 산업 동향 분석 보고서

8. OLED 패널 업체 양산 캐파 분석과 전망

8.7 연간 기판 면적 전망

- 🥒 업체별
 - 삼성디스플레이의 IT용 OLED 라인 캐파는 A5 투자로 인해 2028년에 *** m²가 될 것으로 예상됨.
 - LG디스플레이와 BOE, Visionox의 IT용 라인 캐파는 6G 라인만 반영되었으며, 향후 8.6G 라인 투자에 따라 더 증가 될 것으로 전망됨.

9. OLED 출하량 전망

9.2 응용 제품별

- Tablet PC용 OLED 출하량은 2023년 ***만대에서 연평균 ***%의 성장률로 2027년에는 ****만대가 될 것으로 예상됨.
- Notebook용 OLED 출하량은 연평균 ***%의 성장률로 2027년에 ***만대에 달할 것으로 전망됨.
- Monitor용 OLED 출하량은 2027년 ***만대가 될 것으로 예상됨.

9. OLED 출하량 전망

9.3 패널 업체별

- 삼성디스플레이의 notebook용 OLED 출하량은 2023년 ***만대에서 2027년에 ***만대가 될 것으로 예상되며, tablet PC용 OLED 출하량은 2023년 ***만대에서 2027년 ***만대가 될 것으로 전망됨.
- LG디스플레이의 tablet PC용 OLED는 추가 투자가 없는 한 2024년부터 ***만대를 유지할 것으로 예상됨.
- BOE와 Visionox는 6세대 라인에서 tablet PC를 각각 2024년에 ***만대와 ***만대, 2027년에 ***만대와 ***만대를 양산할 것으로 전망됨.

Company	Application	2023	2024	2025	2026	2027
	Notebook			67		
Samsung Display	Tablet PC					
	Monitor					
LG Display	Tablet PC					
BOE	Tablet PC					
Visionox	Tablet PC				14	
Total						

패널 업체별 IT용 OLED 출하량 전망

Source: UBI Research DB

 1. 본 보고서는 유비리서치에서 발간한 보고서 입니다.
 2. 본 보고서는 구매자에 한해서만 사용 가능하며, 구매자 이외의 제 3자가 사용시 또는 외부 유출 시에는 지적재산권 침해에 대해 보고서 구매 가격의 10배 손해 배상을 청구합니다.
 3. 본 보고서의 내용을 대외적으로 발표할 경우에는 반드시 유비리서치의 동의를 받아야 합니다.
 4. 본 보고서에 지적소유권 등은 유비리서치에 있으며, 판권소유에 위배되는 사항(인쇄, 복제, 제본)은 법에 저촉됩니다.

[주의]

Senior Analyst Chang Wook HAN Chang Ho NOH

Analyst
Dae Jeong YOON

UBI RESEARCH

www.ubiresearch.com A-1901, Samho Mulsan Bldg, 83 Nonhyeon-ro, Seocho-gu, Seoul, 06296, South Korea TEL : +82-2-577-4391 E-MAIL : marketing@ubiresearch.com